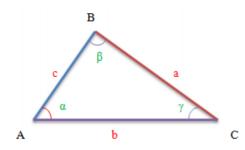


Справочный материал по геометрии.

I. Треугольник.



В треугольнике АВС:

- a, b и c длины сторон BC, AC и AB соответственно.
- А, В, С величины углов ВАС, АВС и ВСА соответственно.
- $p = \frac{a+b+c}{2}$ полупериметр треугольника ABC.
- h_a , h_b , h_c длины высот AA_2 , BB_2 , CC_2 треугольника ABC соответственно.
- R радиус окружности, описанной около треугольника ABC.
- r радиус окружности, вписанной в треугольник ABC;
- S_{ABC} площадь треугольника ABC.

Имеют место следующие соотношения:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 (теорема синусов);

$$c^2=a^2+b^2-2abcosC$$
 (теорема косинусов);

Площадь треугольника АВС можно найти следующими способами:

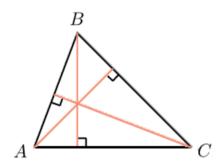
- $S_{ABC} = \frac{1}{2} absinC;$
- \bullet S_{ABC} =pr;

$$lack$$
 S_{ABC} = $\sqrt{p(p-a)(p-b)(p-c)}$ (формула Герона)

Что еще вы должны знать про треугольник?

В любом треугольнике можно провести замечательные линии.

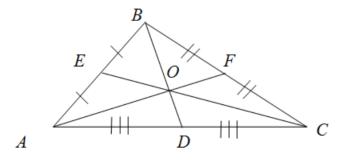
1. Высота - перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противоположную сторону.



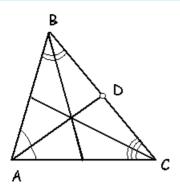
2 Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Основные свойства медианы:

- а) Медиана разбивает треугольник на два треугольника одинаковой площади.
- б) Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины.



3. <u>Биссектриса</u> - отрезок, который соединяет вершину с противоположной стороной и делит соответствующий угол пополам.



Какие формулы вам пригодятся:

Если в задаче дана медиана	$m_a = \frac{1}{2}\sqrt{2(b^2 + c^2) - a^2}$
Если в задаче дана биссектриса	C $\frac{b}{m}$ $\frac{1}{2}$ $\frac{a}{b}$ $\frac{a}{b} = \frac{n}{m}$

І.І. Прямоугольный треугольник и начало тригонометрии.

Основные соотношения в прямоугольном треугольнике			
b b b c a_c b b	Теорема Пифагора $c^2 = a^2 + b^2$ Квадрат гипотенузы равен сумме квадратов катетов.	Пропорциональные отрезки $h^2 = a_c b_c$ $a^2 = a_c c$ $b^2 = b_c c$ $h = \frac{ab}{c}$	
а с	СИНУС Отношение противолежащего катета к гипотенузе	$\sin \alpha = \frac{a}{c}$	
$ \begin{array}{cccc} & \alpha & & \\ & C & & b & A \end{array} $ $ \angle C = 90^{\circ} & \angle A = \alpha $	КОСИНУС Отношение прилежащего катета к гипотенузе	$\cos \alpha = \frac{b}{c}$	
$c = AB - $ гипотенуза $a = BC - $ катет, противолежащий к α	ТАНГЕНС Отношение противолежащего катета к прилежащему	$tg \alpha = \frac{a}{b}$	
$b = AC - катет,$ прилежащий к углу α	КОТАНГЕНС Отношение прилежащего катета к противолежащему	$\operatorname{ctg} \alpha = \frac{b}{a}$	

СООТНОШЕНИЯ МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ

$$tg \, \alpha \, = \frac{\sin \alpha}{\cos \alpha} \qquad \qquad \qquad sin^2 \, \alpha \, + \cos^2 \alpha \, = 1 \, - \, \text{основное} \\ \text{тригонометрическое тождество} \\ sin \, (90\, \degree - \, \alpha) \, = \, \cos \alpha \\ cos(90\, \degree - \, \alpha) \, = \, \sin \alpha \\ sin \, (180\, \degree - \, \alpha) \, = \, \sin \alpha \\ cos(180\, \degree - \, \alpha) \, = \, - \, \cos \alpha \end{pmatrix} \,$$
 формулы приведения

II. Четырехугольники.

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

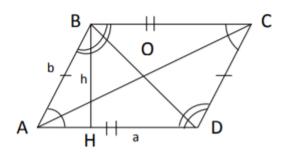
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Друзья, для более наглядного понимания, вам будет удобно зарисовать себе в тетрадь такую табличку:

Выпишите в тетрадь следующие формулы:

Для параллелограмма:



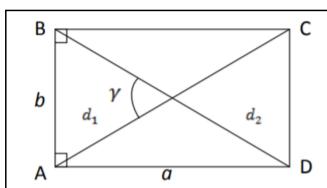
$$S = ah$$
, где $a = AD -$ основание $h = BH -$ высота

$$S = ab \cdot \sin \alpha$$
,
где $a = \mathrm{AD}, b = \mathrm{AB},$
 $\angle a = \angle BAD$

$$S = \frac{AC \cdot BD \cdot \sin \angle AOB}{2}$$

$$S = 4 \cdot S_{\Delta AOB}$$

Для частных случаев параллелограмма (прямоугольник, ромб, квадрат):

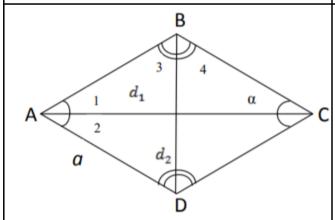


$$S = ab$$

$$S = \frac{{d_1}^2 \sin \gamma}{2} -$$
 площадь

$$P = 2(a + b)$$
 - периметр

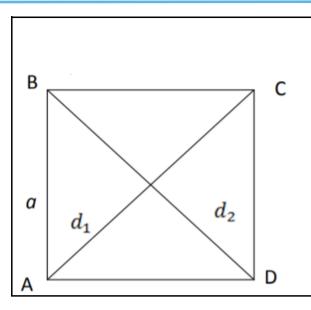
$$d_I^2 = a^2 + b^2$$



$$S=lpha^2\sinlpha \ S=rac{d_1d_2}{2}$$
 - площадь

$$P = 4a$$
 — периметр

$$d_1^2 + d_2^2 = 4a^2$$



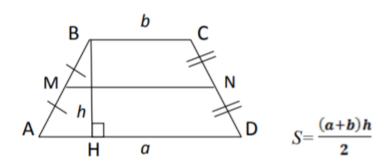
$$S=a^2-$$
 площадь $S=rac{{d_1}^2}{2}$ $S=rac{1}{2}Pr$,

где r – радиус вписанной окружности

$$P = 4a$$
 - периметр

$$d_1 = a\sqrt{2}$$

И для трапеции:



MN - средняя линия. $MN = \frac{BC + AD}{2}$

III. Окружность и круг.

Соотношения между элементами окружности и круга.

Окр. (O; r)

т. О - центр окружности

OK = OB = OA = r -радиус

AB = d -диаметр

b - касательная

АС - хорда

MN - секущая

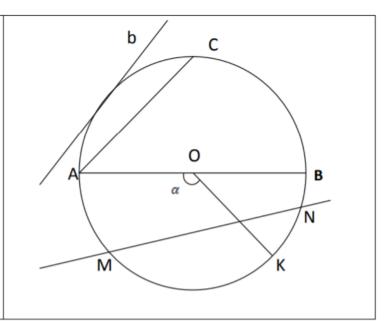
АК - дуга окружности

d = 2r

 $C=2\pi r$ - длина окружности

 $C = \pi d$

 $L = \frac{r\pi\alpha}{180^\circ}$ - длина дуги



АВ - дуга окружности

∠AOB - центральный угол

$$\angle AOB = \widetilde{AB}$$

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается.

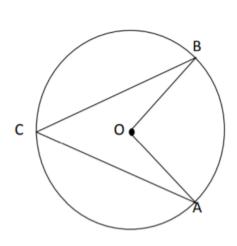
∠АСВ – вписанный угол

$$\angle ACB = \frac{\overline{AB}}{2}$$

Вписанный угол измеряется половиной дуги, на которую опирается.

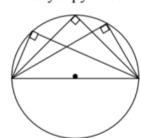
 $\angle ACB = \frac{\angle AOB}{2}$, если \overrightarrow{AB} меньше

полуокружности

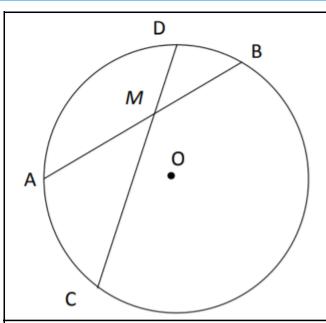


Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность – прямой.



Свойства окружности и ее элементов:

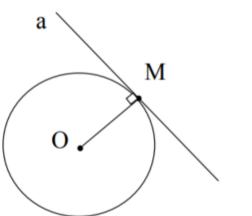


Свойство хорд

AB; CD – хорды

 $AB \cap CD = M$ $AM \cdot MB = CM \cdot MD$

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

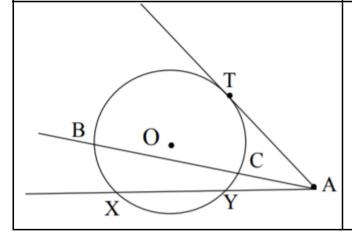


Свойство касательной

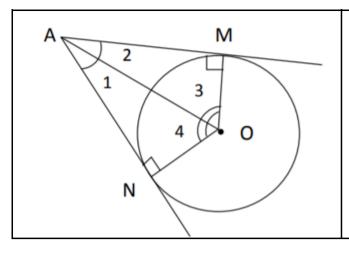
ОМ – радиус а – касательная М – точка касания

 $OM \perp a$

Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.



AT — касательная AB; AX — секущие $AT^2 = AX \cdot AY$ $AT^2 = AB \cdot AC$

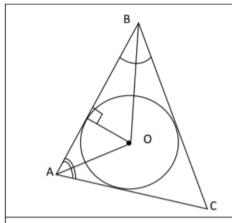


AM, AN -касательные M, N -точки касания AM = AN $\angle 1 = \angle 2; \ \angle 3 = \angle 4$

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Теперь самое главное:

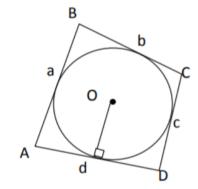
Вписанная окружность.



В любой треугольник можно вписать окружность.

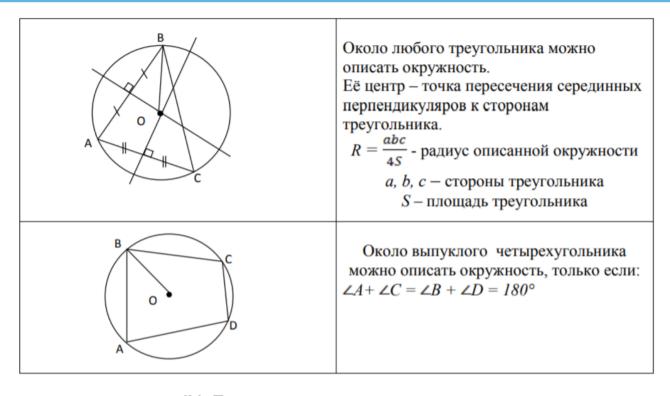
Её центр – точка пересечения биссектрис треугольника.

$$r = \frac{2S}{a+b+c}$$
 - радиус вписанной окружности a, b, c - стороны треугольника S - площадь треугольника



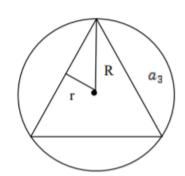
В выпуклый четырехугольник можно вписать окружность, только если: a+c=b+d, где a,b,c,d- стороны четырехугольника

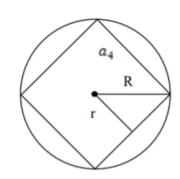
И описанная окружность:

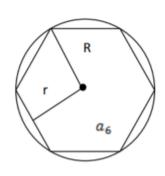


IV. Правильные многоугольники.

Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.







$$\alpha_n = \frac{n-2}{n} \cdot 180^{\circ} -$$
вычисление угла

многоугольника

$$a_n = 2R \sin \frac{180^{\circ}}{n}$$
 — сторона

многоугольника

$$S = \frac{1}{2} \cdot Pr$$
 - площадь

$$r = R \cos \frac{180^{\circ}}{n}$$

n — число сторон

R – радиус описанной окружности

r – радиус вписанной окружности

P – периметр

	треугольник	квадрат	шестиугольник
	α		α
∠ α	60°	90°	120°
а	$a_3 = R\sqrt{3}$	$a_4 = R\sqrt{2}$	$a_6 = R$
R	$R = \frac{a_3}{\sqrt{3}}$	$R = \frac{a_4}{\sqrt{2}}$	$R=a_6$
r	$r = \frac{1}{2} R$	$r = \frac{\sqrt{2}}{2} R$	$r = \frac{\sqrt{3}}{2} R$